

- 1 Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on
- 2 emission data, satellite observations and atmospheric transport modeling since 1980
- 3 Lei Liu^a, Xiuying Zhang^{a,*}, Wen Xu^b, Xuejun Liu^b, Yi Li^c, Xuehe Lu^a, Yuehan Zhang^d, Wuting
- 4 Zhang a, e
- 5 ^a Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International
- 6 Institute for Earth System Science, Nanjing University, Nanjing 210023, China
- 7 ^b College of Resources and Environmental Sciences, Centre for Resources, Environment and Food
- 8 Security, Key Lab of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193,
- 9 China
- ^c Air Quality Division, Arizona Department of Environmental Quality, Phoenix, AZ, 85007, USA
- 11 ^d School of Atmospheric Sciences, Nanjing University, Nanjing, China
- 12 ^e Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and
- 13 Application, Nanjing 210023, China
- 14 * Corresponding authors: Xiuying Zhang (lzhxy77@163.com)
- 15 Abstract
- 16 China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive
- 17 nitrogen (Nr). Atmospheric ammonia (NH₃) and nitrogen dioxide (NO₂) are the most important
- 18 precursors for Nr compounds (including N₂O₅, HNO₃, HONO and particulate NO₃⁻ and NH₄⁺) in the
- 19 atmosphere. Understanding the changes of NH₃ and NO₂ has important implications for the regulation
- 20 of anthropogenic Nr emissions, and is a requirement for assessing the consequence of environmental
- 21 impacts. We conducted the temporal trend analysis of atmospheric NH₃ and NO₂ on a national scale

- 22 since 1980 based on emission data (during 1980-2010), satellite observations (for NH₃ since 2008 and
- 23 for NO₂ since 2005) and atmospheric chemistry transport modeling (during 2008-2015).

24	Based on the emission data, during 1980-2010, both significant continuous increasing trend of NH_3 and
25	NO_x were observed from REAS (Regional Emission inventory in Asia, for $NH_3\ 0.17\ kg\ N\ ha^{\cdot 1}\ y^{\cdot 2}$ and
26	for NOx 0.16 kg N ha $^{\cdot 1}$ y $^{\cdot 2})$ and EDGAR (Emissions Database for Global Atmospheric Research, for
27	$NH_3~0.24~kg~N~ha^{\cdot1}~y^{\cdot2}$ and for $NO_x~0.17~kg~N~ha^{\cdot1}~y^{\cdot2})$ over China. Based on the satellite data and
28	atmospheric chemistry transport modeling named as the Model for Ozone and Related chemical
29	Tracers, version 4 (MOZART-4), the NO ₂ columns over China increased significantly (p <0.01) from
30	2005 to 2011 and then decreased significantly from 2011 to 2015; the satellite-retrieved NH ₃ columns
31	from 2008 to 2014 had no big changes but increased in 2015 (large increase from satellite IASI, but
32	slight increase from MOZART-4). The decrease in NO_2 columns since 2011 may result from more
33	stringent strategies taken to control NO _x emissions during the 12th Five-Year-Plan, while no control
34	policy focused on NH3 emissions. Our findings provided an overall insight on the temporal trends of
35	both NO_2 and NH_3 since 1980 based on emission data, satellite observations and atmospheric transport
36	modeling. These findings can provide a scientific background for policy-makers that are attempting to
37	control atmospheric pollution in China. Moreover, the multivariate data used in this study have
38	implications for estimating long-term Nr deposition datasets to assess its impact on soil, forest, water
39	and greenhouse balance.
40	Keywords: trends, seasonal cycle, ammonia

- 41 **1. Introduction**
- 42 Reactive nitrogen (Nr) emissions have increased significantly in China due to anthropogenic activities
- 43 such as increased combustion of fossil fuels, over-fertilization and high stocking rates of farm animals

44	(Canfield et al., 2010;Galloway et al., 2008;Liu et al., 2013). Elevated Nr in the environment has led to
45	a series of effects on climate change and ecosystems, e.g. biodiversity loss, stratospheric ozone
46	depletion, air pollution, freshwater eutrophication, the potential alteration of global temperature,
47	drinking water contamination, dead zones in coastal ecosystems and grassland seed bank depletion
48	(Basto et al., 2015;Lan et al., 2015;Shi et al., 2015). Atmospheric reactive N emissions are dominated
49	by nitrogen oxides (NO _x = NO + NO ₂) and ammonia (NH ₃) (Li et al., 2016a;Galloway et al., 2004).
50	Atmospheric NO ₂ and NH ₃ are the most important precursors for Nr compounds including N ₂ O ₅ , HNO ₃ ,
51	HONO and particulate NO_3^- and NH_4^+ in the atmosphere (Xu et al., 2015;Pan et al., 2012). Therefore,
52	an understanding of both the spatial and temporal patterns of NO_2 and NH_3 is essential for evaluating
53	N-enriched environmental effects, and can provide the scientific background for N pollution mitigation.
54	To investigate the spatial and temporal variations of atmospheric NO_2 and NH_3 , ground measurements
55	are acknowledged to be an effective way in monitoring the accurate concentrations of \ensuremath{NO}_2 and \ensuremath{NH}_3
56	(Xu et al., 2015;Pan et al., 2012;Meng et al., 2010). Ground measurements of NO ₂ concentrations in
57	China, including about 500 stations in 74 cities, have been monitored and reported to the public since
58	January 2013 (Xie et al., 2015). By the end of 2013, this network was extended with hourly NO_2
59	concentrations from more than 850 stations in 161 cities. However, there are fewer NH_3 measurements
60	across China than NO2 measurements. The China Agricultural University has organized a Nationwide
61	Nitrogen Deposition Monitoring Network (NNDMN) since 2004, consisting of 43 monitoring sites
62	covering urban, rural (cropland) and background (coastal, forest and grassland) areas across China (Xu
63	et al., 2015;Liu et al., 2011). Xu et al. (2015) reported the ground NH ₃ concentrations throughout China
64	for the first time, providing great potential to understand the ground NH_3 concentrations on a national
65	scale. Other networks include (1) the Chinese Ecosystem Research Network (CERN) which was

66	established in 1988, including 40 field stations (Fu et al., 2010). However, to our knowledge, there are
67	no detailed reports about ground NH_3 concentrations from CERN on a national scale. (2) Four Chinese
68	cities (Xiamen, Xi-An, Chongqing and Zhuhai) have joined the Acid Deposition Monitoring Network
69	in East Asia (EANET) since 1999. However, only one site (Hongwen, Xiamen) in EANET measured
70	the ground NH_3 concentrations and that data is not continuous. Finally, ground NH_3 concentrations at
71	ten sites in Northern China from 2007 to 2010 have been reported by Pan et al (2013). All of the above
72	ground measurements provide the potential to understand $\ensuremath{NH_3}$ and $\ensuremath{NO_2}$ concentrations on a regional
73	scale. However, there is limited information on the spatial and temporal variations of $\ensuremath{\text{NH}}_3$ and $\ensuremath{\text{NO}}_2$ in
74	the atmosphere across China. This is due to the limited observation sites and monitoring period, as well
75	as given the uneven distribution of the monitoring sites. Importantly, atmospheric NH_3 and NO_2
76	monitoring based on ground-based local sites may have limited spatial representativeness of the
77	regional scale as both NH ₃ and NO ₂ are highly variable in time and space (Clarisse et al., 2009;Wichink
78	Kruit et al., 2012;Boersma et al., 2007).

79 In order to complement ground-based measurements, satellite observation of NH_3 and $NO_2\ is\ a$ 80 welcome addition for analyzing the recent trends of NH3 and NO2 in the atmosphere. Satellite remote 81 sensing offers an opportunity to monitor atmospheric NH3 and NO2 with high temporal and spatial 82 resolutions (Warner et al., 2017;Li et al., 2016b). NO2 was measured by multiple space-based 83 instruments including the Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY), Ozone Monitoring 84 Instrument (OMI) and Global Ozone Monitoring Experiment-2 (GOME-2). The OMI NO2 provides the 85 best horizontal resolution $(13 \times 24 \text{ km}^2)$ among instruments in its class and near-global daily coverage 86 87 (Levelt et al., 2007). OMI observations have been widely applied in environmental-related studies and

88	for the support of emission control policy (Russell et al., 2012;Zhao and Wang, 2009). First
89	measurements of NH3 from space were reported over Beijing and San Diego areas with the
90	Tropospheric Emission Spectrometer (TES) (Beer et al., 2008) and in fire plumes in Greece with the
91	Infrared Atmospheric Sounding Interferometer (IASI) (Coheur et al., 2009). The first global map of
92	NH ₃ was created from IASI measurements by correlating the observed brightness temperature
93	differences to NH ₃ columns using the averaged datasets in 2008 (Clarisse et al., 2009). Shortly after
94	that, many studies focused on developing techniques to gain more reliable NH ₃ columns (Whitburn et
95	al., 2016a;Van Damme et al., 2014b), validating the retrieved NH3 columns using the ground
96	measurements (Van Damme et al., 2014a;Dammers et al., 2016) and comparing the data with the
97	results of the atmospheric chemistry transport models (Van Damme et al., 2014c; Whitburn et al.,
98	2016a), and the estimated NH_3 columns obtained from Fourier transform infrared spectroscopy (FTIR)
99	(Dammers et al., 2016). The current method is based on the calculation of a spectral hyperspectral
100	range index and subsequent conversion to a NH_3 total column using a neural network. Details on the
101	retrieval algorithm can be found in Whitburn et al. (2016). The progresses made on the satellite
102	techniques provides potential for understanding both the spatial and temporal variations of $\ensuremath{NH_3}$ and
103	NO ₂ in the atmosphere.
104	In addition to satellite observations, the emission data are also very important tools for investigating the
105	temporal trends of NH_3 and NO_2 such as the IIASA inventory (Cofala et al., 2007), EDGAR (Emission
106	Database for Global Atmospheric Research, RAINS-Asia (Regional Air Pollution Information and
107	Simulation) and Asia REAS (Regional Emission inventory in Asia). REAS is considered as the first
108	inventory by integrating historical, current and future emissions data for Asia based on a consistent

109 methodology (Ohara et al., 2007), and EDGAR is the global emission data with 0.1 by 0.1 grid, which

- 110 is believed to have the highest spatial resolutions among different datasets mentioned above. Thus,
- 111 REAS and EDGAR are used to analyze the historical trends of NH₃ and NO₂ during 1980-2010 in this
- 112 study. Based on the EDGAR emission data, a widely used atmospheric transport model named as the
- 113 Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) was also used to model the
- 114 temporal trend of NH₃ and NO₂ columns during 2008-2015 in comparison with the temporal trends of
- 115 NH₃ and NO₂ columns measured by satellite instruments.
- 116 We aim at getting an overall insight on the temporal trends of both NO₂ and NH₃ since 1980 based on
- 117 the multivariate data including the emission data, satellite observations and atmospheric transport
- 118 modeling. We herein show the Chinese national trend of REAS and EDGAR NH₃ and NO_x emission
- 119 data during 1980-2010, satellite-retrieved NH₃ during 2008-2015 and NO₂ columns (2005-2015), and
- 120 atmospheric transport chemistry modeling NH₃ and NO₂ columns (2008-2015). It should be noted here
- 121 that the satellite NH₃ columns were retrieved from the IASI, and can only be obtained since 2008. It is
- 122 beneficial to analyze the temporal variations of both NH₃ and NO₂, hence providing a scientific basis
- 123 for policy makers to reduce N-enriched environmental pollution in China.
- 124 2. Materials and methods
- 125 2.1. NH₃ and NO₂ Emissions

We examined the emission inventory dataset for Asia REAS (Regional Emission inventory in Asia) with $0.5 \,^{\circ} \times 0.5 \,^{\circ}$ resolution for the period 1980-2010, and analyzed the temporal trends of NO_x and NH₃ over China. REAS is believed to be the first inventory of integrating past, present and future dataset in Asia based on a consistent methodology. The REAS datasets have been validated by several emissions, and denotes agreement with the recent growth status in Chinese emissions (Ohara et al., 2007). We also collected NO_x and NH₃ emission data from EDGAR (Emissions Database for Global Atmospheric

132	Research) v4.3.1, developed by the Netherlands Environmental Assessment Agency and European
133	Commission Joint Research Centre (Jgj et al., 2002). The EDGAR emissions are calculated on the basis
134	of a point emissions inventory conducted by the International Energy Agency. EDGAR also has a long
135	time period 1980-2010 with the highest spatial resolution globally (0.1×0.1)
136	(http://edgar.jrc.ec.europa.eu/overview.php?v=431).
137	2.2. Satellite observations
138	IASI is a passive remote-sensing instrument operating in nadir mode and measures the infrared
139	radiation emitted by the Earth's surface and the atmosphere (Clarisse et al., 2009). It covers the entire
140	globe twice a day, crossing the equator at a mean solar local time of 9:30 A.M. and P.M, and has an
141	elliptical footprint of 12 by 12 km up to 20 by 39 km depending on the satellite-viewing angle. In this
142	study we use daytime satellite observations as these are more sensitive to NH_3 and are associated with a
143	large positive thermal contrast and a significant amount of NH ₃ (Van Damme et al., 2014b;Whitburn et
144	al., 2016a). The availability of measurements is mainly driven by the cloud coverage as only
145	observations with cloud coverage lower than 25% are processed to be a good compromise between the
146	number of data kept for the analysis and the bias due to the effect of clouds. As the amount of daily
147	data is not always sufficient to obtain meaningful distributions (due to cloud cover or the availability of
148	the temperature profiles from the EUMETSAT operational processing chain) (Van Damme et al.,
149	2014b), it is more appropriate to consider monthly or yearly averages for this trend analysis. We
150	consider IASI observations with a relative error below 100% or an absolute error below 5×10^{15} molec.
151	$\rm cm^{-2}$ for analysis over China. For the error, the filtering depends on the use of the data. For example, in
152	this study, when averaging over large areas, we consider IASI observations with a relative error below
153	100% or an absolute error below 5×10^{15} molec. cm ⁻² for analysis over China. Doing this, low columns

154	typical for background conditions with a large relative error but a small absolute error are also taken
155	into account. For other applications, such as comparing with ground measurements, we would
156	recommend to use a threshold of 75% or even 100% relative error. We gained the data upon request
157	from the Atmospheric Spectroscopy Group at Université Libre De Bruxelles
158	(http://www.ulb.ac.be/cpm/atmosphere.html). This data can be gridded on 0.1 $^{\circ}$ latitude ×0.1 $^{\circ}$ longitude
159	(Dammers et al., 2016), 0.25 ° latitude $\times 0.25$ ° longitude (Whitburn et al., 2016a) and 0.5 ° latitude $\times 0.5$ °
160	longitude (Whitburn et al., 2016b) or even coarser resolutions depending on the usage of the data. For
161	IASI NH3, we firstly divided China into 0.5 $^\circ$ latitude $\times 0.5^\circ$ longitude grid. For each grid cell, we
162	calculated the monthly arithmetic mean by averaging the daily values with observations points within
163	the grid cell. Similarly, we calculated the annual arithmetic mean by averaging the daily values with
164	observations points within the grid cell over the whole year.
165	The NO_2 columns are obtained from the OMI instrument on NASA's EOS Aura satellite globally
166	everyday. We used the generated products by the project "Derivation of Ozone Monitoring Instrument
167	tropospheric NO_2 in near-real time" (DOMINO) to analyze the temporal trends of NO_2 columns over
168	China. In DOMINO products, only the observations with an absolute error below 10^{15} molec. cm ⁻² and
169	a cloud radiance fraction below 0.5 were processed for analysis. The retrieval algorithm is described in
170	detail in the manuscript (Boersma et al., 2007) and recent updates can be found in the DOMINO
171	Product Specification Document (<u>http://www.temis.nl/docs/OMI_NO2_HE5_1.0.2.pdf</u>). We used
172	tropospheric NO_2 retrievals from the DOMINO algorithm v2.0. The retrieval quality of NO_2 products
173	are strongly dependent on different aspects of air mass factors, such as radiative transfer calculations,
174	terrain heights and surface albedo. The OMI v2.0 data were mainly improved by more realistic
175	atmospheric profile parameters, and include more surface albedo and surface pressure reference points

176	than before	Boersmalet al 2011	·Roersma et al	2016) The F	DOMINO NO ₂	datasets are	available from
1/0	than before	Doersina et al., 2011	,DUCISINA CLAI.,	2010). The L	\mathcal{O}	ualasets are	available nom

- 177 http://www.temis.nl/airpollution/no2.html. We should state in particular that we used directly the
- 178 DOMINO v2.0 products of monthly means from 2005 to 2015 over China for the trend analysis. The
- 179 DOMINO NO₂ columns were gridded at a resolution of 0.125 °latitude×0.125 °longitude grid globally,
- 180 which has been widely used for scientific applications (Ma et al., 2013;Ialongo et al., 2016;Castellanos
- 181 et al., 2015).

182	To illustrate measurement availability, we presented here some measurement statistics. A total number
183	of cloud-free daytime observations as characterized by the operational IASI processor by year were
184	retrieved in China during 2008-2015 for NH_3 (Fig. 1b). We retrieved more observation numbers after
185	2010 than those during 2008-2009. In 2010, the update of the improved air temperature profiles, cloud
186	properties products and cloud detection, which are important for calculating the thermal contrast,
187	increased the quality of retrieval (Van Damme et al., 2014b;Van Damme et al., 2014c). In November
188	2014, there was another update of the air temperature profiles, cloud properties products and cloud
189	detection for calculating the thermal contrast. For the updates of the IASI-NH ₃ data, you can refer to
190	Van Damme et al. (2014b), Van Damme et al. (2014c) and Whitburn et al. (2016). The monthly
191	observation numbers are also presented in Fig. 1a, showing that spring (Mar, Apr and May), summer
192	(Jun, Jul and Aug), autumn (Sep, Oct and Nov) and winter (Dec, Jan and Feb) months represent 29% ,
193	26%, 23% and 21%, respectively. Compared with large variations of observation numbers for NH_3 , the
194	observation numbers for NO_2 varied less by year; winter season had the least, while other seasons
195	varied little.

196 2.3. Atmospheric transport chemistry model

197 Atmospheric transport chemistry model is also of central importance in modeling the tropospheric NO₂

198	and NH_3 . We applied a widely used atmospheric global atmospheric transport chemistry model named
199	as the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) to simulate the
200	tropospheric NO_2 and NH_3 columns during 2008-2015 in accordance with the time period of IASI NH_3
201	measurements.
202	The MOZART-4 model is driven by the meteorological data from the NASA Goddard Earth Observing
203	System Model, Version 5 (GEOS-5). The emission data applied for driving the simulations are based on
204	the updated EDGAR emission inventories. 12 bulk aerosol compounds, 39 photolysis, 85 gas species as
205	well as 157 gas-phase reactions were integrated in MOZART-4. The chemical mechanism on N
206	compounds including the NO ₂ , NH ₃ and aerosols are detailedly integrated to MOZART-4, which is
207	considered to be suitable for tropospheric chemical compositions (Emmons et al., 2010;Pfister et al.,
208	2008;Sahu et al., 2013). The output data used in the current work are temporally varying six hours
209	every day, which were upon request by Louisa Emmons at National Center for Atmospheric Research
210	(NCAR). The monthly means of NO_2 and NH_3 columns were averaged by the daily data, and then used
211	for the trend analysis over China. For more details about MOZART-4, the reader should refer to
212	previous studies (Emmons et al., 2010;Brasseur et al., 1998;Beig and Singh, 2007).
213	3. Results and discussions
214	3.1. NH ₃ and NO ₂ emissions during 1980-2010
215	We conducted the temporal analysis of NH_3 and NO_x emissions since 1980 based on REAS and
216	EDGAR. Both significant continuous increasing trend of NH_3 and NO_x were observed from REAS (for
217	$\rm NH_3~0.17~kg~N~ha^{-1}~y^{-2}$ and for $\rm NO_x~0.16~kg~N~ha^{-1}~y^{-2})$ and EDGAR (for $\rm NH_3~0.24~kg~N~ha^{-1}~y^{-2}$ and for
218	NO _x 0.17 kg N ha ⁻¹ y ⁻²) over China (Fig. 2). We found relatively consistent increase of NO _x emission

219 from EDGAR and REAS over China, i.e. 0.17 kg N ha⁻¹ y⁻² vs 0.16 kg N ha⁻¹ y⁻², but inconsistency in

220	the magnitude in NH_3 emissions from EDGAR and REAS over China, i.e. 0.24 kg N ha ⁻¹ y ⁻² vs 0.17 kg
221	N ha ⁻¹ y ⁻² . The increase rate in NH_3 emissions over China from EDGAR was much higher than that
222	from REAS, indicating the magnitude of increase trend in NH ₃ over China remains a debate, although
223	their thread values both positive (at this point they are consistent). It implies that, at least, we can
224	conclude that the NH_3 emissions are indeed increasing during 1980-2010. We also conducted a simple
225	correlation analysis of the $\rm NH_3$ (Fig. 2a) and $\rm NO_x$ (Fig. 2b) from REAS and EDGAR, showing
226	agreement in the magnitude (slope=1.06) and temporal trend (R ² =0.96) for NO _x , but some
227	inconsistency in the increase rate (slope= 1.33) for NH ₃ .
228	Aforementioned explanations suggest the NH ₃ emissions in China since 1980 remains a debate in the
229	magnitude of NH ₃ increase rate from REAS and EDGAR. Liu et al. (2013) conducted that emissions of
230	national anthropogenic NH_3 and NO_x summarized from published data during 1980-2010, and found
231	that the NH ₃ emissions increase rate was about 0.32 Tg N y ⁻² (about 0.33 kg N ha ⁻¹ y ⁻²), which was
232	close to 0.24 kg N ha ⁻¹ y ⁻² from EDGAR. At this point, it seems that the trend in NH ₃ emissions from
233	EDGAR over China since 1980 may be more reasonable, but should be further to be validated in the
234	future due to the fact that it may be not appropriate to compare the gridded emission map from EDGAR
235	or REAS with the results of statistical data conducted from published papers by Liu et al. (2013).
236	3.2. Satellite NH ₃ and NO ₂ over China in the recent decade
237	3.2.1. Temporal trends

We used the average values over the whole China by month to demonstrate the trend analysis. From satellite observations, the NO₂ columns over China increased significantly with a slope of 0.011 (10^{15} molec. cm⁻² month⁻¹) from January 2005 to December 2011 and then decreased significantly with a slope of -0.017 (10^{15} molec. cm⁻² month⁻¹) from January 2011 to December 2015 (Fig. 3 a). The

242	decreasing trends were consistent with NO_x emissions since 2011 over China (decreasing from
243	24.04×10^6 ton in 2011 to 20.78 $\times 10^6$ ton in 2014, China Statistical Yearbook, http://www.stats.gov.cn/).
244	The decrease percentage in NO_x emissions was 16.67% from 2011 to 2014, which was consistent with
245	the decrease percentage (17.86%) in the NO_2 columns from 2011 to 2014 over China. During the
246	Chinese 11th Five-Year-Plan (11th FYP) period (2006-2010), even though Chinese government
247	undertook a series of strategies to increase energy efficiency and to reduce NO_{x} emissions, NO_{x}
248	emissions were not restrained, creating a big challenge for improving air quality over the country (Xia
249	et al., 2016). During the 12th FYP period (2011-2015), more stringent strategies were taken to control
250	NO_{x} emissions, including the application of selective catalytic/non-catalytic reduction (SCR/SNCR)
251	systems in the power sector, staged implementation of tighter emission standards on vehicles and a
252	series of standards with aggressive emission limits for power, cement, and the iron and steel industries.
253	These strategies are believed to have helped achieve national targets of NO _x emission abatement (Xia et
254	al., 2016).
255	However, the satellite-retrieved NH ₃ columns had no big changes (increased slightly with a slope of
256	0.024×10^{15} molec. cm ⁻² month ⁻¹ from 2008 to 2014 (Fig. 3 b), but increase largely in 2015 (this will
257	be discussed in Sect. 3.3 in comparison with MOZART-4 simulations in detail). No decreasing trend in
258	$NH_{3}\ columns\ may\ be\ associated\ with\ continuous\ N\ fertilizer\ use\ for\ guaranteeing\ increase\ of\ crop$
259	productions (Erisman et al., 2008). Although there was no strong NH_3 emission control regulation, N
260	fertilizer efficiency should be further improved over China. In 2015, the Ministry of Agriculture
261	formally announced a "Zero Increase Action Plan" for national fertilizer use by 2020, which requires
262	the annual increase in total fertilizer use will be less than 1% from 2015 to 2019, with no further
263	increment from 2020 (Liu et al., 2015).

264	If the "Zero Increase Action Plan" for N fertilizer can be effective, future NH ₃ emissions should be
265	consistent with the current NH_3 emissions. In addition, due to strong emission control of NO_x , the NO_x
266	emissions were believed to decrease significantly from 2011 to 2015. We can reasonably make two
267	major conclusions. First, the atmospheric $NO_2,\ as\ a\ key\ indicator\ of\ oxidized\ N\ compounds\ (NO_2,$
268	HNO_3 and NO_3 [°]), decreased since 2011, which was consistent with the results of Xia et al. (2016), and
269	will continue to decrease under the current policy. Second, the atmospheric NH_3 , as a key indicator of
270	reduced N (NH $_{3}$ and particulate $\mathrm{NH}_{4}^{ +}),$ will slightly increase or stay at the current level in the future
271	with the "Zero Increase Action Plan". Thus, due to a decreasing trend of oxidized N (NO _x -N), ammonia
272	N (NH _x -N) should still dominate Nr deposition (oxidized N plus ammonia N) in China, and is expected
273	to play a more significant role in Nr deposition. Therefore, monitoring the reduced N on a regional
274	scale is encouraged to assist in enacting effective measures to protect the environments and public
275	health, with respect to air, soil and water quality.
276	3.2.2. Spatial pattern

277 High NH₃ columns were found in Beijing, Hebei, Henan, Shandong, Hubei and Jiangsu provinces and 278 in Eastern Sichuan province (Fig. 4a), which were consistent with their high NH3 emissions due to 279 intensive fertilizer application and livestock (Huang et al., 2012). Guangdong, Guangxi, Hunan and 280 Jiangxi provinces also showed high NH3 columns, due to high volatilization from paddy fields in these 281 regions, with rice being the dominant crop and contributing the most emissions. The high NH₃ columns 282 are in agreement with the high percent farmland area (Fig. S1), reflecting China's unique agricultural 283 structure and farming practice. In details, the high NH₃ columns in southern China are in agreement 284 with the high percent paddy farmland area (Fig. S1a) and the high NH₃ columns in northern China are 285 in agreement with the high percent dry farmland area (Fig. S1b). In addition, the NH₃ emissions from

286	vehicles in urban areas could also contribute to the observed high $\ensuremath{\text{NH}}_3$ columns. For example, in
287	Beijing, the contribution of vehicles equipped with catalytic converters, particularly since the
288	introduction of three-way-catalysts, to non-agricultural NH3 emissions has recently been considered
289	and might be the most important factor influencing NH_{3} concentrations in urban cities (Meng et al.,
290	2011). In addition, middle-level NH ₃ columns were also observed in some regions in Xinjiang province,
291	although small percent farmland existed there. This is mainly due to the fact that the $\ensuremath{\text{NH}}_3$ emissions
292	from livestock exceeded those from the farmland in Xinjiang, and the contribution of livestock to the
293	total NH ₃ emissions in Xinjiang accounted for higher than 66% (Huang et al., 2012;Zhou et al., 2015).
294	Xinjiang province, where sheep are widely raised, also emits remarkable NH_3 emissions related to
295	sheep manure management (Huang et al., 2012;Kang et al., 2016). The lower NH ₃ columns are located
296	mostly in the Tibet Plateau area, where there is a minimal amount of arable land and low use of
297	synthetic nitrogenous fertilizers.
297 298	synthetic nitrogenous fertilizers. NO ₂ columns (Fig. 4b) show significantly higher values over vast areas covering North China, East
297 298 299	synthetic nitrogenous fertilizers. NO ₂ columns (Fig. 4b) show significantly higher values over vast areas covering North China, East China, and the Sichuan Basin. The NO ₂ columns also show high values over the Pearl River Delta, the
297 298 299 300	synthetic nitrogenous fertilizers. NO ₂ columns (Fig. 4b) show significantly higher values over vast areas covering North China, East China, and the Sichuan Basin. The NO ₂ columns also show high values over the Pearl River Delta, the southern part of Northeast China, and some areas in Northwest China. High NO ₂ columns are mostly
297 298 299 300 301	synthetic nitrogenous fertilizers. NO ₂ columns (Fig. 4b) show significantly higher values over vast areas covering North China, East China, and the Sichuan Basin. The NO ₂ columns also show high values over the Pearl River Delta, the southern part of Northeast China, and some areas in Northwest China. High NO ₂ columns are mostly distributed in populated areas (Fig. S2), where there is a mix of various anthropogenic NO _x sources,
 297 298 299 300 301 302 	synthetic nitrogenous fertilizers. NO ₂ columns (Fig. 4b) show significantly higher values over vast areas covering North China, East China, and the Sichuan Basin. The NO ₂ columns also show high values over the Pearl River Delta, the southern part of Northeast China, and some areas in Northwest China. High NO ₂ columns are mostly distributed in populated areas (Fig. S2), where there is a mix of various anthropogenic NO _x sources, such as vehicles and industrial complexes (Wang et al., 2012;Xu et al., 2015;Meng et al., 2010). It
 297 298 299 300 301 302 303 	synthetic nitrogenous fertilizers. NO ₂ columns (Fig. 4b) show significantly higher values over vast areas covering North China, East China, and the Sichuan Basin. The NO ₂ columns also show high values over the Pearl River Delta, the southern part of Northeast China, and some areas in Northwest China. High NO ₂ columns are mostly distributed in populated areas (Fig. S2), where there is a mix of various anthropogenic NO _x sources, such as vehicles and industrial complexes (Wang et al., 2012;Xu et al., 2015;Meng et al., 2010). It should be noted that an enhanced emission intensity from transportation is confirmed since 2005, even
 297 298 299 300 301 302 303 304 	synthetic nitrogenous fertilizers. NO ₂ columns (Fig. 4b) show significantly higher values over vast areas covering North China, East China, and the Sichuan Basin. The NO ₂ columns also show high values over the Pearl River Delta, the southern part of Northeast China, and some areas in Northwest China. High NO ₂ columns are mostly distributed in populated areas (Fig. S2), where there is a mix of various anthropogenic NO _x sources, such as vehicles and industrial complexes (Wang et al., 2012;Xu et al., 2015;Meng et al., 2010). It should be noted that an enhanced emission intensity from transportation is confirmed since 2005, even with staged implementation of tightened emission standards for on-road vehicles (Wang et al., 2012).
297 298 299 300 301 302 303 304 305	synthetic nitrogenous fertilizers. NO ₂ columns (Fig. 4b) show significantly higher values over vast areas covering North China, East China, and the Sichuan Basin. The NO ₂ columns also show high values over the Pearl River Delta, the southern part of Northeast China, and some areas in Northwest China. High NO ₂ columns are mostly distributed in populated areas (Fig. S2), where there is a mix of various anthropogenic NO _x sources, such as vehicles and industrial complexes (Wang et al., 2012;Xu et al., 2015;Meng et al., 2010). It should be noted that an enhanced emission intensity from transportation is confirmed since 2005, even with staged implementation of tightened emission standards for on-road vehicles (Wang et al., 2012). For example, NO _x emissions from transportation grew to 30% for the whole country in 2014, and the
297 298 299 300 301 302 303 304 305 306	synthetic nitrogenous fertilizers. NO ₂ columns (Fig. 4b) show significantly higher values over vast areas covering North China, East China, and the Sichuan Basin. The NO ₂ columns also show high values over the Pearl River Delta, the southern part of Northeast China, and some areas in Northwest China. High NO ₂ columns are mostly distributed in populated areas (Fig. S2), where there is a mix of various anthropogenic NO _x sources, such as vehicles and industrial complexes (Wang et al., 2012;Xu et al., 2015;Meng et al., 2010). It should be noted that an enhanced emission intensity from transportation is confirmed since 2005, even with staged implementation of tightened emission standards for on-road vehicles (Wang et al., 2012). For example, NO _x emissions from transportation grew to 30% for the whole country in 2014, and the values reached 44%, 55%, and 33% for Beijing, Shanghai, and Guangdong, respectively. Therefore,

- 308 when emissions from stationary sources are gradually controlled through increased penetration of
- 309 selective catalytic/non-catalytic reduction (SCR/SNCR) systems.

310 3.2.3. Limitations of satellite observations

311 It is better to show the trends of NO2 and NH3 by daily data, but satellite instruments are strongly 312 dependent on the meteorological conditions such as cloud fractions or the availability of the 313 temperature profiles (Van Damme et al., 2014b;Boersma et al., 2011), and we cannot retrieve the whole 314 coverage based on daily data over China. It will be beneficial to analyze a very local region with 315 enough numbers of observations, but not appropriate to analyze such large coverage over China. Facing 316 this big challenge, we used the monthly data for the trend analysis over China. The uncertainty of 317 DOMINO v2.0 NO₂ columns has been well documented in Boersma et al. (2011), and the relative error 318 is reported lower than 20-30% in East Asian by an improved altitude-dependent air mass factor look-up 319 table, a more realistic atmospheric profile, an increased number of reference vertical layers and 320 advanced surface albedos (Boersma et al., 2011). The reader is strongly suggested to refer to Boersma

321 et al. (2011) for more details on the uncertainty analysis.

322 The potential uncertainty of IASI NH₃ columns resulted from IASI observation instruments and 323 retrieval algorithms. In this paper, the NH₃ datasets were generated based on the recent-updated robust 324 and flexible NH₃ retrieval algorithms, designed to overcome some shortcomings of the current 325 algorithms (Whitburn et al., 2016a). The current algorithms were designed firstly to calculate the 326 hyperspectral range index (HRI), a measure for the NH₃ signature strength in the spectrum, and then 327 converted to IASI NH₃ columns by using the thermal contrast (TC) and lookup tables (LUT) of (HRI, 328 TC) pair corresponding to NH₃ columns. The retrieval of HRIs is strongly dependent on the amount of NH₃ and the thermal state of the atmosphere (Whitburn et al., 2016a). The quality of the IASI NH₃ 329

330	product has been validated by atmospheric chemistry transport models, ground-based and airborne
331	measurements, and NH_3 total columns obtained with ground-based Fourier transform infrared
332	spectroscopy (FTIR). A first validation of the IASI NH_3 using the LOTOS-EUROS model was
333	conducted over Europe, indicating the respective consistency of IASI measurements and model
334	simulations (Van Damme et al., 2014c). A first evaluation of IASI NH3 dataset using ground-based
335	measurements was made worldwide, presenting consistency with the available ground-based
336	observations and denoting promising results for evaluation by using independent airborne data (Van
337	Damme et al., 2014a). A first validation of of IASI NH_3 dataset using ground-based FTIR derived NH_3
338	total columns was evaluated, demonstrating a mean relative difference of $-32.4\pm(56.3)$ %, a correlation
339	r of 0.8 with a slope of 0.73 (Dammers et al., 2016).
340	3.3. Atmospheric chemistry transport model NO ₂ and NH ₃ columns since 2008
341	We retrieved the monthly variations of NO_2 and NH_3 columns since 2008 from MOZART, and found (1)
341 342	We retrieved the monthly variations of NO_2 and NH_3 columns since 2008 from MOZART, and found (1) consistent increase trend with satellite observations during 2008-2011 and decrease trend during
341 342 343	We retrieved the monthly variations of NO ₂ and NH ₃ columns since 2008 from MOZART, and found (1) consistent increase trend with satellite observations during 2008-2011 and decrease trend during 2011-2015 for NO ₂ columns (Fig. 5 and 3); (2) no big change in NH ₃ columns during 2008-2014 both
341342343344	We retrieved the monthly variations of NO ₂ and NH ₃ columns since 2008 from MOZART, and found (1) consistent increase trend with satellite observations during 2008-2011 and decrease trend during 2011-2015 for NO ₂ columns (Fig. 5 and 3); (2) no big change in NH ₃ columns during 2008-2014 both from MOZART and IASI (Fig. 5 and 3); (3) large increase in NH ₃ columns in 2015 from IASI but no
 341 342 343 344 345 	We retrieved the monthly variations of NO ₂ and NH ₃ columns since 2008 from MOZART, and found (1) consistent increase trend with satellite observations during 2008-2011 and decrease trend during 2011-2015 for NO ₂ columns (Fig. 5 and 3); (2) no big change in NH ₃ columns during 2008-2014 both from MOZART and IASI (Fig. 5 and 3); (3) large increase in NH ₃ columns in 2015 from IASI but no big change from MOZART (Fig. 6, 5 and 3) . For point (1) and (2), we have discussed their reasons in
 341 342 343 344 345 346 	We retrieved the monthly variations of NO ₂ and NH ₃ columns since 2008 from MOZART, and found (1) consistent increase trend with satellite observations during 2008-2011 and decrease trend during 2011-2015 for NO ₂ columns (Fig. 5 and 3); (2) no big change in NH ₃ columns during 2008-2014 both from MOZART and IASI (Fig. 5 and 3); (3) large increase in NH ₃ columns in 2015 from IASI but no big change from MOZART (Fig. 6, 5 and 3). For point (1) and (2), we have discussed their reasons in Sect. 3.2, and here only focused on interpretation of the difference in NH ₃ columns in 2015 from
 341 342 343 344 345 346 347 	We retrieved the monthly variations of NO ₂ and NH ₃ columns since 2008 from MOZART, and found (1) consistent increase trend with satellite observations during 2008-2011 and decrease trend during 2011-2015 for NO ₂ columns (Fig. 5 and 3); (2) no big change in NH ₃ columns during 2008-2014 both from MOZART and IASI (Fig. 5 and 3); (3) large increase in NH ₃ columns in 2015 from IASI but no big change from MOZART (Fig. 6, 5 and 3) . For point (1) and (2), we have discussed their reasons in Sect. 3.2, and here only focused on interpretation of the difference in NH ₃ columns in 2015 from MOZART and IASI.
 341 342 343 344 345 346 347 348 	We retrieved the monthly variations of NO ₂ and NH ₃ columns since 2008 from MOZART, and found (1) consistent increase trend with satellite observations during 2008-2011 and decrease trend during 2011-2015 for NO ₂ columns (Fig. 5 and 3); (2) no big change in NH ₃ columns during 2008-2014 both from MOZART and IASI (Fig. 5 and 3); (3) large increase in NH ₃ columns in 2015 from IASI but no big change from MOZART (Fig. 6, 5 and 3). For point (1) and (2), we have discussed their reasons in Sect. 3.2, and here only focused on interpretation of the difference in NH ₃ columns in 2015 from MOZART and IASI. Based on MOZART-4 (the emission data used for modeling is EDGAR, which is very close to the trend
 341 342 343 344 345 346 347 348 349 	We retrieved the monthly variations of NO ₂ and NH ₃ columns since 2008 from MOZART, and found (1) consistent increase trend with satellite observations during 2008-2011 and decrease trend during 2011-2015 for NO ₂ columns (Fig. 5 and 3); (2) no big change in NH ₃ columns during 2008-2014 both from MOZART and IASI (Fig. 5 and 3); (3) large increase in NH ₃ columns in 2015 from IASI but no big change from MOZART (Fig. 6, 5 and 3) . For point (1) and (2), we have discussed their reasons in Sect. 3.2, and here only focused on interpretation of the difference in NH ₃ columns in 2015 from MOZART and IASI. Based on MOZART-4 (the emission data used for modeling is EDGAR, which is very close to the trend conducted by Liu et al, 2013), the NH ₃ columns over China were slightly higher in 2015 than in 2014

351 and (d) referring to the whole coverage in Fig. 4 (a). But the IASI NH₃ columns increased sharply from

352	2014 to 2015 over China $(6.59 \times 10^{15} \text{ molec. cm}^{-2} \text{ year}^{-1} \text{ in } 2014 \text{ vs } 9.08 \times 10^{15} \text{ molec. cm}^{-2} \text{ year}^{-1} \text{ in }$
353	2015), as shown in Fig. 5 (a) and (c). At the current state, we can, at least, draw a conclusion that the
354	NH_3 columns over China indeed increased in 2015 both from IASI and MOZART, but just a debate or
355	consistency exists on the increase rate of the NH_3 columns in 2015. This may be still an open question
356	on this point, here we only show this two possibilities and possible reasons. We should clarify in
357	particular we do not aim at validating which is right or wrong from IASI and MOZART (which may be
358	beyond the discussion in this paper), but the NH_3 columns in 2015 indeed increased both from IASI
359	and MOZART and this is the conclusion we really concerned. We should state in particular again that
360	the following discussion in this paragraph was all hypothetical and should be tested in the future work.
361	We leave them open questions, which certainly should be studied in detail in the future. For IASI NH_3
362	columns, the sharp increase in 2015 over China may be an artifact, which may be due to an update of
363	the input data. Similar jumps in IASI \ensuremath{NH}_3 increase in 2015 can also be visible in the USA and
364	European (Fig. 7), indicating that it may be necessary for a recalculation of the earlier input datasets
365	used for calculating the IASI NH ₃ columns since November, 2014.

366 3.4. Implications for estimating long-term Nr deposition datasets

We found both the NO₂ and NH₃ emissions over China increased continuously from 1980 to 2010 based on emissions data from REAS and EDGAR. For NH₃, based on the satellite observations and atmospheric transport model (MOZART-4), we found high-level NH₃ columns with no big variations from 2008 to 2014 (an increase in 2015 both from IASI and MOZART but large increase from IASI and slight increase from MOZART). For NO₂, we found continuous high-level NO₂ columns over China from 2005-2011 but a decrease from 2011 to 2015. Despite the decline, the NO₂ columns during 2011-2015 were still in high level. Notably, these emissions certainly lead to the deposition of

374	atmospheric Nr in form of dry and wet processes into aquatic ecosystems and terrestrial, with
375	implications affecting ecosystem and human health, biological diversity and greenhouse gas balances
376	(Lu et al., 2016). Hence, it is very crucial to estimate Nr deposition with high spatiotemporal
377	resolutions in order to drive ecological models such as the Denitrification-Decomposition (DNDC)
378	model and Integrated BIosphere Simulator (IBIS), to assess its impact on soil, forest, water and
379	greenhouse balance. Despite progress in satellite techniques in recent decades (for NO_2 since 1997 by
380	GOME and for NH_3 since 2008 by IASI), challenge still exits in estimating both the dry (NO_2 , HNO_3
381	particulate NO3 $$) and wet (NH4 $^+$ and NO3 $$ in precipitation) depositions for a long-term dataset such as
382	since 1980 or earlier possibly due to the complex scheme of N transformations and transportation or
383	limited available data both from emissions, satellites and a limited number of ground measurements.
384	Hence, we call for a long-term dataset of Nr depositions both regionally and globally to investigate
385	how the N emissions affect the environment. Possibly, long-term emissions data such as REAS and
386	EDGAR will provide a valuable dataset to expand the modeling Nr depositions in recent years, while
387	the simulations combining the satellite measurements and CTM model output to derive Nr depositions
388	(Geddes and Martin, 2017;Nowlan et al., 2014) in recent years will provide relatively accurate datasets
389	(certainly need to be validated and modified by ground measurements).
390	4. Conclusion
391	Atmospheric ammonia (NH ₃) and nitrogen dioxide (NO ₂) play an important role in determining air

392 quality, environmental degradation and climate change. The emission data, satellite observations and 393 atmospheric transport modeling have great potential for understanding the temporal variations of 394 atmospheric NH₃ and NO₂ on a regional scale, with high spatial and temporal resolutions. This study

395 analyzed the characteristics of atmospheric NH₃ and NO₂ over China since 1980 based on the 396 multivariate data. The major findings were as follows: 397 1. Based on emission data, both significant continuous increasing trend of NH₃ and NO_x were observed 398 from REAS (for NH₃ 0.17 kg N ha⁻¹ y⁻² and for NO_x 0.16 kg N ha⁻¹ y⁻²) and EDGAR (for NH₃ 0.24 kg N ha⁻¹ y⁻² and for NO_x 0.17 kg N ha⁻¹ y⁻²) over China during 1980-2010. 399 400 2. Based on the satellite observations and atmospheric transport model (MOZART-4), we found 401 continuous high-level NH₃ columns with no big variations in NH₃ columns from 2008 to 2014 (an 402 increase in 2015 both from IASI and MOZART but large increase from IASI and slight increase from 403 MOZART). For NO₂, we found continuous high-level NO₂ columns over China from 2005-2011 but a 404 decrease from 2011 to 2015 (still in high level). The decrease of NO₂ columns may result from more 405 stringent strategies taken to control NOx emissions during the 12th Five-Year-Plan, including 406 successful application of SCR/SNCR systems in the power sector, tighter emission standards on 407 vehicles and a series of standards with aggressive emission limits. No decreasing trend of NH₃ columns 408 may be due to continuous N fertilizer use for guaranteeing continuous increase of the crop productions. 409 Acknowledgements 410 We acknowledge the free use of tropospheric NO2 column data from the OMI sensor from

411 www.temis.nl. The NH₃ data have been obtained by the Atmospheric Spectroscopy Group at Universit é 412 Libre de Bruxelles (ULB) (http://www.ulb.ac.be/cpm/atmosphere.html). S. Whitburn and M. Van 413 Damme are acknowledged for making the data available and for their help in how to use them. We also 414 thank Louisa Emmons from National Center for Atmospheric Research (NCAR) for providing the 415 MOZART output data for the trend analysis. This study is supported by the National Natural Science 416 Foundation of China (No. 41471343 and 41101315).

417 Reference

- 418 Basto, S., Thompson, K., Phoenix, G., Sloan, V., Leake, J., and Rees, M.: Long-term nitrogen
- 419 deposition depletes grassland seed banks, Nature Communication, 6, 1-6, 10.1038/ncomms7185, 2015.
- 420 Beer, R., Shephard, M. W., Kulawik, S. S., Clough, S. A., Eldering, A., Bowman, K. W., Sander, S. P.,
- 421 Fisher, B. M., Payne, V. H., Luo, M., Osterman, G. B., and Worden, J. R.: First satellite observations of
- 422 lower tropospheric ammonia and methanol, Geophysical Research Letters, 35, n/a-n/a,
- 423 10.1029/2008GL033642, 2008.
- 424 Beig, G., and Singh, V.: Trends in tropical tropospheric column ozone from satellite data and MOZART
- 425 model, Geophysical Research Letters, 34, 2007.
- 426 Boersma, K., Eskes, H., Veefkind, J. P., Brinksma, E., Van Der A, R., Sneep, M., Van Den Oord, G.,
- 427 Levelt, P., Stammes, P., and Gleason, J.: Near-real time retrieval of tropospheric NO2 from OMI,
- 428 Atmospheric Chemistry and Physics, 7, 2103-2118, 2007.
- 429 Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V.,
- 430 Kleipool, Q. L., Sneep, M., Claas, J., Leit ão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved
- 431 tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmospheric
- 432 Measurement Techniques, 4, 1905-1928, 10.5194/amt-4-1905-2011, 2011.
- 433 Boersma, K. F., Vinken, G. C. M., and Eskes, H. J.: Representativeness errors in comparing chemistry
- 434 transport and chemistry climate models with satellite UV–Vis tropospheric column retrievals, Geosci.
- 435 Model Dev., 9, 875-898, 10.5194/gmd-9-875-2016, 2016.
- 436 Brasseur, G., Hauglustaine, D., Walters, S., Rasch, P., Müller, J. F., Granier, C., and Tie, X.: MOZART,
- 437 a global chemical transport model for ozone and related chemical tracers: 1. Model description, Journal
- 438 of Geophysical Research: Atmospheres (1984–2012), 103, 28265-28289, 1998.
- 439 Canfield, D. E., Glazer, A. N., and Falkowski, P. G.: The Evolution and Future of Earth's Nitrogen
- 440 Cycle, Science, 330, 192-196, 10.1126/science.1186120, 2010.
- 441 Castellanos, P., Boersma, K. F., Torres, O., and De Haan, J. F.: OMI tropospheric NO2 air mass factors
- 442 over South America: effects of biomass burning aerosols, Atmospheric Measurement Techniques, 8,
- 443 2683-2733, 2015.
- 444 Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P.-F.: Global ammonia distribution
- derived from infrared satellite observations, Nature Geoscience, 2, 479-483, 2009.

- 446 Cofala, J., Amann, M., Klimont, Z., Kupiainen, K., and Höglund-Isaksson, L.: Scenarios of global
- 447 anthropogenic emissions of air pollutants and methane until 2030, Atmospheric Environment, 41,
- 448 8486-8499, http://dx.doi.org/10.1016/j.atmosenv.2007.07.010, 2007.
- 449 Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., and Clerbaux, C.: IASI measurements of
- 450 reactive trace species in biomass burning plumes, Atmospheric Chemistry and Physics, 9, 5655-5667,
- 451 2009.
- 452 Dammers, E., Palm, M., Van Damme, M., Vigouroux, C., Smale, D., Conway, S., Toon, G. C., Jones,
- 453 N., Nussbaumer, E., Warneke, T., Petri, C., Clarisse, L., Clerbaux, C., Hermans, C., Lutsch, E., Strong,
- 454 K., Hannigan, J. W., Nakajima, H., Morino, I., Herrera, B., Stremme, W., Grutter, M., Schaap, M.,
- 455 Wichink Kruit, R. J., Notholt, J., Coheur, P. F., and Erisman, J. W.: An evaluation of IASI-NH3 with
- 456 ground-based Fourier transform infrared spectroscopy measurements, Atmos. Chem. Phys., 16,
- 457 10351-10368, 10.5194/acp-16-10351-2016, 2016.
- 458 Emmons, L., Walters, S., Hess, P., Lamarque, J.-F., Pfister, G., Fillmore, D., Granier, C., Guenther, A.,
- 459 Kinnison, D., and Laepple, T.: Description and evaluation of the Model for Ozone and Related
- 460 chemical Tracers, version 4 (MOZART-4), Geoscientific Model Development, 3, 43-67, 2010.
- 461 Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a century of
- 462 ammonia synthesis changed the world, Nature Geoscience, 1, 636-639, 2008.
- 463 Fu, B., Li, S., Yu, X., Yang, P., Yu, G., Feng, R., and Zhuang, X.: Chinese ecosystem research network:
- 464 Progress and perspectives, Ecological Complexity, 7, 225-233,
- 465 <u>http://dx.doi.org/10.1016/j.ecocom.2010.02.007</u>, 2010.
- 466 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner,
- 467 G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H.,
- 468 Townsend, A. R., and Vössmarty, C. J.: Nitrogen Cycles: Past, Present, and Future, Biogeochemistry,
- 469 70, 153-226, 10.1007/s10533-004-0370-0, 2004.
- 470 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A.,
- 471 Seitzinger, S. P., and Sutton, M. A.: Transformation of the Nitrogen Cycle: Recent Trends, Questions,
- 472 and Potential Solutions, Science, 320, 889-892, 10.1126/science.1136674, 2008.
- 473 Geddes, J. A., and Martin, R. V.: Global deposition of total reactive nitrogen oxides from 1996 to 2014
- 474 constrained with satellite observations of NO2 columns, Atmos. Chem. Phys. Discuss., 2017, 1-44,
- 475 10.5194/acp-2016-1100, 2017.

- 476 Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and Zhang, H.: A high resolution
- 477 ammonia emission inventory in China, Global Biogeochemical Cycles, 26, 1-14, 2012.
- 478 Ialongo, I., Herman, J., Krotkov, N., Lamsal, L., Boersma, K. F., Hovila, J., and Tamminen, J.:
- 479 Comparison of OMI NO2 observations and their seasonal and weekly cycles with ground-based
- 480 measurements in Helsinki, 1-13, 2016.
- 481 Jgj, O., Jjm, B., Jahw, P., Bakker, J., Ajh, V., and Jpj, B.: Applications of EDGAR Emission Database
- 482 for Global Atmospheric Research, Rijksinstituut Voor Volksgezondheid En Milieu Rivm, 2002.
- 483 Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H.,
- 484 Zhang, Q., Shao, M., and Zhu, T.: High-resolution ammonia emissions inventories in China from 1980
- 485 to 2012, Atmos. Chem. Phys., 16, 2043-2058, 10.5194/acp-16-2043-2016, 2016.
- 486 Lan, Z., Jenerette, G. D., Zhan, S., Li, W., Zheng, S., and Bai, Y.: Testing the scaling effects and
- 487 mechanisms of N-induced biodiversity loss: evidence from a decade-long grassland experiment,
- 488 Journal of Ecology, 103, 750-760, 10.1111/1365-2745.12395, 2015.
- 489 Levelt, P., Stammes, P., Gleason, J., and Bucsela, E.: Near-real time retrieval of tropospheric NO2 from
- 490 OMI, Atmospheric Chemistry and Physics, 7, 2103-2118, 2007.
- 491 Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M., Puchalski, M. A.,
- 492 Gay, D. A., and Collett, J. L.: Increasing importance of deposition of reduced nitrogen in the United
- 493 States, Proceedings of the National Academy of Sciences, 113, 5874-5879, 2016a.
- 494 Li, Y., Thompson, T. M., Van Damme, M., Chen, X., Benedict, K. B., Shao, Y., Day, D., Boris, A.,
- 495 Sullivan, A. P., Ham, J., Whitburn, S., Clarisse, L., Coheur, P. F., and Collett Jr, J. L.: Temporal and
- 496 Spatial Variability of Ammonia in Urban and Agricultural Regions of Northern Colorado, United States,
- 497 Atmos. Chem. Phys. Discuss., 2016, 1-50, 10.5194/acp-2016-1008, 2016b.
- 498 Liu, X., Duan, L., Mo, J., Du, E., Shen, J., Lu, X., Zhang, Y., Zhou, X., He, C., and Zhang, F.: Nitrogen
- 499 deposition and its ecological impact in China: An overview, Environmental Pollution, 159, 2251-2264,
- 500 http://dx.doi.org/10.1016/j.envpol.2010.08.002, 2011.
- 501 Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W., Goulding, K., and
- 502 Christie, P.: Enhanced nitrogen deposition over China, Nature, 494, 459-462, 2013.
- 503 Liu, X., Vitousek, P., Chang, Y., Zhang, W., Matson, P., and Zhang, F.: Evidence for a Historic Change
- 504 Occurring in China, Environmental Science & Technology, 50, 505-506, 2015.
- 505 Lu, X., Jiang, H., Liu, J., Zhang, X., Jin, J., Zhu, Q., Zhang, Z., and Peng, C.: Simulated effects of

- 506 nitrogen saturation on the global carbon budget using the IBIS model, Scientific Reports, 6, 39173,
- 507 10.1038/srep39173, 2016.
- 508 Ma, J. Z., Beirle, S., Jin, J. L., Shaiganfar, R., Yan, P., and Wagner, T.: Tropospheric NO2 vertical
- 509 column densities over Beijing: results of the first three years of ground-based MAX-DOAS
- 510 measurements (2008–2011) and satellite validation, Atmospheric Chemistry & Physics, 13, 1547-1567,
- 511 2013.
- 512 Meng, Z.-Y., Xu, X.-B., Wang, T., Zhang, X.-Y., Yu, X.-L., Wang, S.-F., Lin, W.-L., Chen, Y.-Z., Jiang,
- 513 Y.-A., and An, X.-Q.: Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background and
- 514 rural sites in China during 2007-2008, Atmospheric Environment, 44, 2625-2631,
- 515 <u>http://dx.doi.org/10.1016/j.atmosenv.2010.04.008</u>, 2010.
- 516 Meng, Z., Lin, W., Jiang, X., Yan, P., Wang, Y., Zhang, Y., Jia, X., and Yu, X.: Characteristics of
- 517 atmospheric ammonia over Beijing, China, Atmospheric Chemistry and Physics, 11, 6139-6151, 2011.
- 518 Nowlan, C., Martin, R., Philip, S., Lamsal, L., Krotkov, N., Marais, E., Wang, S., and Zhang, Q.:
- 519 Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space based measurements,
- 520 Global Biogeochemical Cycles, 28, 1025-1043, 2014.
- 521 Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian
- 522 emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem.
- 523 Phys., 7, 4419-4444, 10.5194/acp-7-4419-2007, 2007.
- 524 Pan, Y., Wang, Y., Tang, G., and Wu, D.: Wet and dry deposition of atmospheric nitrogen at ten sites in
- 525 Northern China, Atmospheric Chemistry and Physics, 12, 6515-6535, 2012.
- 526 Pfister, G., Emmons, L., Hess, P., Lamarque, J. F., Orlando, J., Walters, S., Guenther, A., Palmer, P., and
- 527 Lawrence, P.: Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM
- 528 MOZART 4, Journal of Geophysical Research: Atmospheres (1984 2012), 113, 2008.
- 529 Russell, A., Valin, L., and Cohen, R.: Trends in OMI NO 2 observations over the United States: effects
- 530 of emission control technology and the economic recession, Atmospheric Chemistry and Physics, 12,
- 531 12197-12209, 2012.
- 532 Sahu, L., Sheel, V., Kajino, M., Gunthe, S. S., Thouret, V., Nedelec, P., and Smit, H. G.: Characteristics
- 533 of tropospheric ozone variability over an urban site in Southeast Asia: A study based on MOZAIC and
- 534 MOZART vertical profiles, Journal of Geophysical Research: Atmospheres, 118, 8729-8747, 2013.
- 535 Shi, Y., Cui, S., Ju, X., Cai, Z., and Zhu, Y.-G.: Impacts of reactive nitrogen on climate change in China,

- 536 Scientific Reports, 5, 8118, 10.1038/srep08118
- 537 <u>http://www.nature.com/articles/srep08118#supplementary-information</u>, 2015.
- 538 Van Damme, M., Clarisse, L., Dammers, E., Liu, X., Nowak, J., Clerbaux, C., Flechard, C.,
- 539 Galy-Lacaux, C., Xu, W., and Neuman, J.: Towards validation of ammonia (NH3) measurements from
- 540 the IASI satellite, Atmospheric Measurement Techniques, 7, 12125-12172, 2014a.
- 541 Van Damme, M., Clarisse, L., Heald, C., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A., Erisman,
- 542 J. W., and Coheur, P.-F.: Global distributions, time series and error characterization of atmospheric
- 543 ammonia (NH3) from IASI satellite observations, Atmospheric Chemistry and Physics, 14, 2905-2922,
- 544 2014b.
- 545 Van Damme, M., Wichink Kruit, R., Schaap, M., Clarisse, L., Clerbaux, C., Coheur, P. F., Dammers, E.,
- 546 Dolman, A., and Erisman, J.: Evaluating 4 years of atmospheric ammonia (NH3) over Europe using
- 547 IASI satellite observations and LOTOS EUROS model results, Journal of Geophysical Research:
- 548 Atmospheres, 119, 9549-9566, 2014c.
- 549 Wang, S., Zhang, Q., Streets, D., He, K., Martin, R., Lamsal, L., Chen, D., Lei, Y., and Lu, Z.: Growth
- 550 in NO x emissions from power plants in China: bottom-up estimates and satellite observations,
- 551 Atmospheric Chemistry and Physics, 12, 4429-4447, 2012.
- 552 Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y., and Liang, Q.: Increased atmospheric
- 553 ammonia over the world's major agricultural areas detected from space, Geophysical Research Letters,
- 554 n/a-n/a, 10.1002/2016GL072305, 2017.
- 555 Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L., Hadji-Lazaro, J., Hurtmans, D.,
- 556 Zondlo, M. A., Clerbaux, C., and Coheur, P. F.: A flexible and robust neural network IASI-NH3
- 557 retrieval algorithm, Journal of Geophysical Research: Atmospheres, 121, 6581-6599,
- 558 10.1002/2016JD024828, 2016a.
- 559 Whitburn, S., Van Damme, M., Clarisse, L., Turquety, S., Clerbaux, C., and Coheur, P. F.: Doubling of
- 560 annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño, Geophysical
- 561 Research Letters, 43, 11,007-011,014, 10.1002/2016GL070620, 2016b.
- 562 Wichink Kruit, R. J., Schaap, M., Sauter, F. J., van Zanten, M. C., and van Pul, W. A. J.: Modeling the
- 563 distribution of ammonia across Europe including bi-directional surface-atmosphere exchange,
- 564 Biogeosciences, 9, 5261-5277, 10.5194/bg-9-5261-2012, 2012.
- 565 Xia, Y., Zhao, Y., and Nielsen, C. P.: Benefits of China's efforts in gaseous pollutant control indicated

- 566 by the bottom-up emissions and satellite observations 2000–2014, Atmospheric Environment, 136,
- 567 43-53, <u>http://dx.doi.org/10.1016/j.atmosenv.2016.04.013</u>, 2016.
- 568 Xie, Y., Zhao, B., Zhang, L., and Luo, R.: Spatiotemporal variations of PM2.5 and PM10
- 569 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3,
- 570 Particuology, 20, 141-149, <u>http://dx.doi.org/10.1016/j.partic.2015.01.003</u>, 2015.
- 571 Xu, W., Luo, X. S., Pan, Y. P., Zhang, L., Tang, A. H., Shen, J. L., Zhang, Y., Li, K. H., Wu, Q. H., Yang,
- 572 D. W., Zhang, Y. Y., Xue, J., Li, W. Q., Li, Q. Q., Tang, L., Lv, S. H., Liang, T., Tong, Y. A., Liu, P.,
- 573 Zhang, Q., Xiong, Z. Q., Shi, X. J., Wu, L. H., Shi, W. Q., Tian, K., Zhong, X. H., Shi, K., Tang, Q. Y.,
- 574 Zhang, L. J., Huang, J. L., He, C. E., Kuang, F. H., Zhu, B., Liu, H., Jin, X., Xin, Y. J., SHi, X. K., Du,
- 575 E. Z., Dore, A. J., Tang, S., Collett Jr, J. L., Goulding, K., Sun, Y. X., Ren, J., Zhang, F. S., and Liu, X.
- 576 J.: Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China,
- 577 Atmospheric Chemistry and Physics, 15, 12345-12360, 2015.
- 578 Zhao, C., and Wang, Y.: Assimilated inversion of NOx emissions over east Asia using OMI NO2
- 579 column measurements, Geophysical Research Letters, 36, 1-5, 2009.
- 580 Zhou, Y., Shuiyuan, C., Lang, J., Chen, D., Zhao, B., Liu, C., Xu, R., and Li, T.: A comprehensive
- 581 ammonia emission inventory with high-resolution and its evaluation in the Beijing-Tianjin-Hebei
- 582 (BTH) region, China, Atmospheric Environment, 106, 305-317,
- 583 <u>http://dx.doi.org/10.1016/j.atmosenv.2015.01.069</u>, 2015.
- 584
- 585

587Fig. 1. The satellite-derived observation numbers for NO2 and NH3. (a) denotes the percentages of observations in each month in5882010 for NO2 and in 2015 for NH3 and (b) represents the total observation numbers for NO2 and NH3 over China. Notably, the589NO2 observation numbers were gained from DOMINO products, with an absolute error below 10^{15} molec. cm² and a cloud590radiance fraction below 0.5, while the IASI observations with a relative error below 100% or an absolute error below 5×10^{15} 591molec. cm² were processed for analysis over China.

592

Fig. 2. The NO₂ and NH₃ emissions over China. (a) denotes the NO₂ and NH₃ emissions over China from 1980 to 2010 from
REAS, (b) represents the NO₂ and NH₃ emissions over China from 1980 to 2010 from EDGAR, (c) demonstrates the relationship
of NO₂ emissions over China from REAS and EDGAR and (d) shows the relationship of NH₃ emissions over China from REAS
and EDGAR.

598

Fig. 3. Time series of monthly NO₂ columns and NH₃ columns over China. (a) indicates the monthly NO₂ columns from January
2005 to December 2015 and (b) denotes the NH₃ columns from January 2008 to December 2014 over China The associated mean
error for each month is presented here as error bars. Black dots and blue lines indicate the satellite observations, and pink (or
green) lines indicate the trend.

Fig. 4. Spatial distribution of the annual NH₃ (a) and NO₂ (b) columns (molecules cm⁻² year⁻¹). The successfully full provincial names are Beijing (BJ), Tianjin (TJ), Hebei (HeB), Shandong (SD), Shanxi (SX), Henan (HeN), Shaanxi (SaX), Liaoning (LN),
Jilin (JL), Heilongjiang (HLJ), Neimenggu (NMG), Gansu (GS), Ningxia (NX), Xinjiang (XJ), Shanghai (SH), Jiangsu (JS),
Zhejiang (ZJ), Anhui (AH), Hubei (HuB), Hunan (HuN), Jiangxi (JX), Fujian (FJ), Guangdong (GD), Hainan (HaN), Yunnan
(YN), Guizhou (GZ), Chongqing (CQ), Sichuan (SC), Guangxi (GX), Xizang (XZ) and Qinghai (QH).

612

Fig. 5. Time series of monthly NO₂ columns (a) and NH₃ columns (b) over China from January 2008 to December 2014 based on
 MOZART. The associated mean error for each month is presented here as error bars. Black dots and blue lines indicate the

- 615 satellite observations, and pink (or green) lines indicate the trend.
- 616

618

617

 $619 \qquad \text{Fig. 6. NH}_3 \text{ columns over China obtained from IASI and MOZART. (a) indicates the variations of monthly NH}_3 \text{ columns}$

620 obtained from IASI, (b) denotes the variations of monthly NH₃ columns obtained from MOZART, (c) shows the difference of

 $621 \qquad \text{annual NH}_3 \text{ columns in 2014 and 2015 obtained from IASI and (d) demonstrates the difference of annual NH}_3 \text{ columns in 2014}$

622 and 2015 obtained from MOZART.

